Friday, 27 September 2013

CHAPTER 4



SURDS
Surds are roots that are not possible to find exactly. They are irrational numbers eg √5, √7 etc. however the approximate values can be found from square root tables. We also have surds such as 3√5, 5√27 etc.

RULES OF SURDS
1. √mn = √m x √n
Example: √(4 x 9) = √4 x √9 = 2 x 3 = 6

2. √m/n = m
                n
Example: √(9/4) = √9 = 3
                             √4    2
Note: √(m + n) ≠m + √n 
And √(m - n) ≠ √m - √n 

REDUCTION OF SURDS TO BASIC FORM
n is in basic form if n does not contain a factor which is a perfect square. Thus √10, √11, √13 etc are in basic form and cannot be simplified further. However √32 is not in basic form and can be simplified as      √(2 x 16) = √16 x √2 = 4√2

ADDITION AND SUBTRACTION OF SIMILAR SURDS
Simplify √50 - √18 + √32
Solution:
Reduce all the surds to their basic forms
√(2 x 25)  - √(2 x 9)  + √(2 x 16) 
√2 x √25 - √2 x √9 + √2 x √16
5√2 - 3√2 + 4√2 = 6√2

RATIONALIZING THE DENOMINATOR
A surd such as √3 , cannot be simplified, but  2 can be written in a more convenient form by
                         2                                           √3
 multiplying the numerator and denominator of  2 by √3
                                                                     √3
Eg  2  =  2  x √3 =      2√3    = 2√3 = 2√3. This process removes the irrational number (√3)
     √3    √3    √3     √(3 x 3)     √9        3
from the denominator and this is called rationalizing the denominator.

CONJUGATE SURDS
Given the surd expression a + √b, then a - √b is called its conjugate. The product of a surd and its conjugate is not a surd but a real number eg (a + √b) (a - √b ) = a2b. We use the conjugate of a surd to rationalize the denominator. E.g.
Simplify     1     
            3 - 2√2
Solution:
     1      x  3 + 2√2
3 - 2√2     3 + 2√2
= 3 + 2√2 = 3 + 2√2
   9 – 4(2)

FINDING THE SQUARE ROOT OF A SURD EXPRESSION
Note the following rules in surd:
(√a + √b)2 = (a + b) + 2√ab
(√a - √b)2 = (a + b) – 2√ab

Example: Find the positive square root of 49 – 12√5
Solution:
49 – 12√5 = (√a - √b)2 = (a + b) – 2√ab
Hence 49 = a + b
Or a + b = 49 ………………………. (1)
12√5 = 2√ab
Dividing both sides by 2
6√5 = √ab, hence
ab = 180 ……………………..…….. (2)
From (1), a = 49 - b
Substitute for a in (2)
(49 - b)b = 180
49bb2 = 180, hence
b2 – 49b + 180 = 0
(b – 4) (b – 45) = 0
Hence b = 4 or 45
From (2), ab = 180
But a > b, since the root must be positive, hence
a = 45, b = 4
Thus, the square root of 49 – 12√5 = √a - √b
= √45 - √4 = [√(5 x 9) - √4]
= 3√5 – 2

QUESTIONS
1. Simplify the following:
(a) √72  (b) √20  (c) √1000  (d) √(1/8)  (e) √864  (f) √50 + √32 - √162  (g) (2√3 – 1)(2√3 + 1)
(h) √72 - √12 + √75  (i) √2 x √8  (j) (2√2 – 1)2  (k) (2 + √3)2   (l)  (2√2 – 1)2 
(m) √162 + √32 - √98   (n)    6  .   (o)  12   (p)     1       (q)      2     (r) √3 – 1 
                  √8                      √2           √80       √3 – 1         √5 – 2       √3 + 1
(s) 2√2 + 3  (t) 3√5 - √2   (u) ab   (v)        1        -       1         (w) 3√2 + √3
     2√2 – 1      2√5+3√2       a–√b          2√2 – 1      2√2 + 1           √2 + √3

CHAPTER 3



INDICES AND LOGARITHMS
Law 1: am x an = am+n
Example 53 x 54 = 53+4 = 57
Law 2: am ÷ an = am-n
Example 57 ÷ 53 = 57-3 = 54
Law 3: (an)m = amn
Example (32)3 = 32 x 32 x 32 = 32+2+2 = 36
Law 4: a0 = 1
Example 70 = 73-3 = 73 ÷ 73 = 1
Law 5: a-n =   1      .
                    an
Example 52 = 52- 4 = 52 ÷ 54 =         5 x 5       =    1     =   1
                                                    5 x 5 x 5 x 5     5 x 5       52
Law 6: a1/n = na
Example 271/3 = 3√27 = 3
SIMPLE EXPONENTIAL EQUATIONS
Example 1: Solve the equation 3x = 81
Solution: 3x = 34
Hence x = 4
Example 2: Solve 8x = 0.25
Solution: 23x = 1/4 = 1/22 = 2-2
Hence 3x = -2
Therefore x = - 2/3
Example: Solve 22x + 4(2x) – 32 = 0
Solution: (2x)2 + 4(2x) – 32 = 0
Let 2x = p, hence
(2x)2 + 4(2x) – 32 =  p2 + 4p – 32 = 0
Solving for p, (p + 8) (p – 4) = 0
Hence p = - 8 or 4
2x = -8 or 2x = 4, but 2x = -8 has no solution
Hence, 2x = 4 = 22
x = 2
Example: Solve the equation 32(x – 1) – 8 (3x – 2 ) = 1
Solution: 32(x – 1) – 8 (3x – 2 ) – 1 = 0
32x – 2 – 8 (3x x 3–2 ) - 1 = 0
(3x)2 x 3–2 – 8 (3x x 3–2 ) - 1 = 0
Let 3x = P
 P2 – 8( P ) – 1 = 0
 9          9
Multiply through by 9
P2 – 8P – 9 = 0
(P – 9) (P + 1) = 0
P = 9 or – 1
P = - 1 has no solution, but P = 9, since 3x = P
3x = 32
x = 2
LOGARITHMS
Law 1: If y = ax, then x = loga y
Example: 9 = 32, therefore log3 9 = 2     
Law 2: loga PQ = loga P  +  loga Q 
Example: loga 6 = loga (3 x 2) =  loga 3 + loga 2
Law 3: loga (P/Q) = loga P – loga Q
Example: loga 5 = loga (10/2) = loga 10 – loga 2 
Law 4: loga Pn =  nloga P
Example: loga 9 = loga 32 = 2 loga 3
Law 5: loga 1 = 0 (The log of 1 to any base is zero)
Example: log5 1 = 0,  log7 1 = 0
Law 6: logp P = 1 (The logarithm of the same base always equal to 1)
Example: log2 2 = 1, log6 6 = 1
Law 7: logp 1/P  = logp P-1 = -1 (The logarithm of any fraction of the same base is equal to the exponent of that fraction)
Example: log2 1/8 = log2 8-1 = log2 2-3 = - 3
Law 8: logba b = 1/a
Example: log9 3 = log32 3 = ½.
Examination Questions
1. Simplify log4 9 + log4 21 – log4 7
Solution:
Log4 9 + log4 21 – log4 7 = log4 (9 x 21 ÷ 7)
Log4 27 = log4 33
3 log4 3
2. If log7 2 = 0.356 and log7 3 = 0.566 find the value of 2 log7 (7/15) +  log7 (25/12) – 2 log7 (7/3)
Solution:
= 2 log7 (7/15) + log7 (25/12) – 2 log7 (7/3)
= log7 (7/15)2 + log7 (25/12) – (7/3)2
= log7 {(7/15)2 x (25/12)} = log7 { 7  x  7  x 25 x  3  x  3 }
                    (7/3)2                               15    15    12     7      7
= log7 (1/12) = log7 1 – log7 12 = - log7 12 (since log7 1 = 0 Law 5)
= - log7 (22 x 3) = - 2 log7 2 + log7 3
= - (2 x 0.356) + 0.566
= -1.278
3. Find x if a2-x = T
Solution: loga a2-x = loga T
Then 2 – x = loga T
x = 2 – loga T
x = 2 loga a – loga T
x = loga a2 – loga T
x = loga (a2/T)
LOGARITHMIC EQUATIONS
1. Solve the equations (a) log10 (2x2 + 5x + 97) = 2
(b) log10 (3x2 + 8) = 1 + log10 {(x/2) + 1}
Solutions:
(a) log10 (2x2 + 5x + 97) = log10 100
Taking away log10
Hence 2x2 + 5x + 97 = 100
2x2 + 5x – 3 = 0
Therefore (2x – 1) (x + 3) = 0, giving x = ½ or 3
(b) log10 (3x2 + 8) = log10 10 + log10 {(x/2) + 1}
log10 (3x2 + 8) = log10 {10[(x/2) + 1]}
log10 (3x2 + 8) = log10 (5x + 10)
3x2 + 8 = 5x + 10 or 3x2 + 5x – 2 = 0
(3x + 1) (x – 2) = 0, giving x = - ⅓ or 2
2. If log9 (a + 3) – log9 b = c + ½ ……… (1)
log3 (a – 3) + log3 b = c – 1 ………….….(2)
Show that a2 = 9 + 27c and find the possible values of a and b when c = 1.
Solution:
From equation (1)
log9 (a + 3) – log9 b = c + log9 3 (since 9½ = 3)
log9 (a + 3) – log9 b - log9 3 = c
log9 (a + 3) – log9 (3b) = c
log9  a + 3 = c
         3b
 a + 3  = 9c ……………………………...(3)
   3b
From equation (2)
log3 (a – 3) + log3 b = c – log3 3 (since log3 3 = 1)
log3 (a – 3) + log3 b + log3 3 = c
log3 3b(a – 3) = c
3b(a – 3) = 3c ……………………………..(4)
(3) x (4) = (a + 3)(a – 3) = 9c  x 3c
= a2 – 9 = 27c
Hence a2 = 9 + 27c
If c = 1, then a2 = 36
a = +6 or -6
But a cannot equal – 6 as then neither log9 (a + 3) or log3 (a – 3) would exist.
When a = 6, equation (1) gives 6 + 3 = 9
                                                  3b
9/3b= 9 or b = ⅓.  Hence a = 6, b = ⅓
COMMON LOGARITHMS
Express 3200 in standard form; hence we have 3.2 x 103. To find the logarithm of 3200 ie log10 3200 = log10 3.2 x 103 = log10 3.2 + log10 103 = 0.505 + 3 log10 10 = 3.505. 
For any number expressed in standard form such as 3.2 x 10n, log10 3.2 x 10n = n + 0.505. The part 0.505 is called the Mantissa while n is called the Characteristic.
Example: Find log7 12
Solution:
x = log7 12
7x = 12
Taking logarithms of both sides
log 7x = log 12
x log 7 = log 12
x = log 12   = 1.0792   = 1.278
       log 7        0.8451
Using logarithm table to solve 1.0792
                                             0.8451
No.                  Log
1.0792             0.0331
0.8451            -1.9269
1.278               0.1062
QUESTIONS
1. Find the value of:
(a) log3 5,  (b) log2 7,  (c) log5 20  (d) log7 35  (e) log8 10  (f) log3 (1/8)  (g) log12 94
(h) log12 9.4  (i) log2 0.47
2. Solve the equations:
(a) 2x = 5  (b) 3x = 5  (c) 1.8x = 2.7  (d) 5x = 10  (e) 3x+2 = 7  (f) 2x-1 = 5x  (g) 3x+2 = 5x-1
(h) (2.5)x-3 = (0.4)x   (i) (0.37)2x-1 = 9   (j) (0.4)x+3 = (0.5)2x   (k) 3x+2 = 5 x 2x